Halbordnungen und maximale Teilkörper in gelochten algebraisch-abgeschlossenen Körpern.
Einleitung. Eine klassische Konstruktion aus der algebraischen Zahlentheorie ist folgende: Zu jedem algebraischen Zahlkörper K kann man ein sogenanntes System idealer Zahlen S zuordnen, welches eine Untergruppe der multiplikativen Gruppe ℂ* der komplexen Zahlen ist derart, daß die Faktorgruppe S/K* in kanonischer Weise isomorph zu der Klassengruppe von K ist. Diese Konstruktion geht auf Hecke [5] zurück und hat folgende wichtige Eigenschaft, die auch bei dem Hilbertschen Klassenkörper zu K vorkommt:...