Slope filtration of quasi-unipotent overconvergent -isocrystals
We study local properties of quasi-unipotent overconvergent -isocrystals on a curve over a perfect field of positive characteristic . For a --module over the Robba ring , we define the slope filtration for Frobenius structures. We prove that an overconvergent -isocrystal is quasi-unipotent if and only if it has the slope filtration for Frobenius structures locally at every point on the complement of the curve.