Displaying 41 – 60 of 63

Showing per page

The regular inverse Galois problem over non-large fields

Jochen Koenigsmann (2004)

Journal of the European Mathematical Society

By a celebrated theorem of Harbater and Pop, the regular inverse Galois problem is solvable over any field containing a large field. Using this and the Mordell conjecture for function fields, we construct the first example of a field K over which the regular inverse Galois problem can be shown to be solvable, but such that K does not contain a large field. The paper is complemented by model-theoretic observations on the diophantine nature of the regular inverse Galois problem.

Triangulation in o-minimal fields with standard part map

Lou van den Dries, Jana Maříková (2010)

Fundamenta Mathematicae

In answering questions of J. Maříková [Fund. Math. 209 (2010)] we prove a triangulation result that is of independent interest. In more detail, let R be an o-minimal field with a proper convex subring V, and let st: V → k be the corresponding standard part map. Under a mild assumption on (R,V) we show that a definable set X ⊆ Vⁿ admits a triangulation that induces a triangulation of its standard part st X ⊆ kⁿ.

Currently displaying 41 – 60 of 63