Page 1

Displaying 1 – 3 of 3

Showing per page

Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero

Andrey Trepalin (2014)

Open Mathematics

Let 𝕜 be a field of characteristic zero and G be a finite group of automorphisms of projective plane over 𝕜 . Castelnuovo’s criterion implies that the quotient of projective plane by G is rational if the field 𝕜 is algebraically closed. In this paper we prove that 𝕜 2 𝕜 2 G G is rational for an arbitrary field 𝕜 of characteristic zero.

Reductive group actions on affine varieties and their doubling

Dmitri I. Panyushev (1995)

Annales de l'institut Fourier

We study G -actions of the form ( G : X × X * ) , where X * is the dual (to X ) G -variety. These actions are called the doubled ones. A geometric interpretation of the complexity of the action ( G : X ) is given. It is shown that the doubled actions have a number of nice properties, if X is spherical or of complexity one.

Currently displaying 1 – 3 of 3

Page 1