On Gaussian polynomials and content ideal.
Bakkari, Chahrazade, Mahdou, Najib (2009)
Beiträge zur Algebra und Geometrie
Matthews, R., Lidl, R. (1988)
International Journal of Mathematics and Mathematical Sciences
M.A. Ostrowski (1976)
Aequationes mathematicae
A.M. Ostrowski (1975)
Aequationes mathematicae
A. Prószyński (1978)
Fundamenta Mathematicae
J. Bochnak, W. Kucharz (1990)
Annales Polonici Mathematici
Peyman Nasehpour (2016)
Archivum Mathematicum
Let be a commutative ring with an identity different from zero and be a positive integer. Anderson and Badawi, in their paper on -absorbing ideals, define a proper ideal of a commutative ring to be an -absorbing ideal of , if whenever for , then there are of the ’s whose product is in and conjecture that for any ideal of an arbitrary ring , where . In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions...
Li, Aihua, Mosteig, Edward (2010)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Piotr Ossowski (1998)
Colloquium Mathematicae
Mátyás, Ferenc (2007)
Annales Mathematicae et Informaticae
R. Gilmer (1991)
Semigroup forum
Harris Hancock (1900)
Journal für die reine und angewandte Mathematik
Torleiv Klove (1973)
Mathematica Scandinavica
J.-L. Chabert (1979)
Annales scientifiques de l'Université de Clermont. Mathématiques
Paul-Jean Cahen, Youssef Haouat (1988)
Manuscripta mathematica
Paul-Jean Cahen (1991)
Journal für die reine und angewandte Mathematik
Paul-Jean Cahen (1975)
Annales scientifiques de l'Université de Clermont. Mathématiques
T. Pezda (1994)
Acta Arithmetica
1. Let R be a domain and f ∈ R[X] a polynomial. A k-tuple of distinct elements of R is called a cycle of f if for i=0,1,...,k-2 and . The number k is called the length of the cycle. A tuple is a cycle in R if it is a cycle for some f ∈ R[X]. It has been shown in [1] that if R is the ring of all algebraic integers in a finite extension K of the rationals, then the possible lengths of cycles of R-polynomials are bounded by the number , depending only on the degree N of K. In this note we consider...
F. Halter-Koch, W. Narkiewicz (1995)
Monatshefte für Mathematik
Carl Faith (1989)
Publicacions Matemàtiques
All rings considered are commutative with unit. A ring R is SISI (in Vámos' terminology) if every subdirectly irreducible factor ring R/I is self-injective. SISI rings include Noetherian rings, Morita rings and almost maximal valuation rings ([V1]). In [F3] we raised the question of whether a polynomial ring R[x] over a SISI ring R is again SISI. In this paper we show this is not the case.