The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 15 of 15

Showing per page

On Bhargava rings

Mohamed Mahmoud Chems-Eddin, Omar Ouzzaouit, Ali Tamoussit (2023)

Mathematica Bohemica

Let D be an integral domain with the quotient field K , X an indeterminate over K and x an element of D . The Bhargava ring over D at x is defined to be 𝔹 x ( D ) : = { f K [ X ] : for all a D , f ( x X + a ) D [ X ] } . In fact, 𝔹 x ( D ) is a subring of the ring of integer-valued polynomials over D . In this paper, we aim to investigate the behavior of 𝔹 x ( D ) under localization. In particular, we prove that 𝔹 x ( D ) behaves well under localization at prime ideals of D , when D is a locally finite intersection of localizations. We also attempt a classification of integral domains D ...

On co-Gorenstein modules, minimal flat resolutions and dual Bass numbers

Zahra Heidarian, Hossein Zakeri (2015)

Colloquium Mathematicae

The dual of a Gorenstein module is called a co-Gorenstein module, defined by Lingguang Li. In this paper, we prove that if R is a local U-ring and M is an Artinian R-module, then M is a co-Gorenstein R-module if and only if the complex H o m R ̂ ( ( , R ̂ ) , M ) is a minimal flat resolution for M when we choose a suitable triangular subset on R̂. Moreover we characterize the co-Gorenstein modules over a local U-ring and Cohen-Macaulay local U-ring.

On the symmetric algebra of certain first syzygy modules

Gaetana Restuccia, Zhongming Tang, Rosanna Utano (2022)

Czechoslovak Mathematical Journal

Let ( R , 𝔪 ) be a standard graded K -algebra over a field K . Then R can be written as S / I , where I ( x 1 , ... , x n ) 2 is a graded ideal of a polynomial ring S = K [ x 1 , ... , x n ] . Assume that n 3 and I is a strongly stable monomial ideal. We study the symmetric algebra Sym R ( Syz 1 ( 𝔪 ) ) of the first syzygy module Syz 1 ( 𝔪 ) of 𝔪 . When the minimal generators of I are all of degree 2, the dimension of Sym R ( Syz 1 ( 𝔪 ) ) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.

Currently displaying 1 – 15 of 15

Page 1