The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Matlis dual of local cohomology modules

Batoul Naal, Kazem Khashyarmanesh (2020)

Czechoslovak Mathematical Journal

Let ( R , 𝔪 ) be a commutative Noetherian local ring, 𝔞 be an ideal of R and M a finitely generated R -module such that 𝔞 M M and cd ( 𝔞 , M ) - grade ( 𝔞 , M ) 1 , where cd ( 𝔞 , M ) is the cohomological dimension of M with respect to 𝔞 and grade ( 𝔞 , M ) is the M -grade of 𝔞 . Let D ( - ) : = Hom R ( - , E ) be the Matlis dual functor, where E : = E ( R / 𝔪 ) is the injective hull of the residue field R / 𝔪 . We show that there exists the following long exact sequence 0 H 𝔞 n - 2 ( D ( H 𝔞 n - 1 ( M ) ) ) H 𝔞 n ( D ( H 𝔞 n ( M ) ) ) D ( M ) H 𝔞 n - 1 ( D ( H 𝔞 n - 1 ( M ) ) ) H 𝔞 n + 1 ( D ( H 𝔞 n ( M ) ) ) H 𝔞 n ( D ( H ( x 1 , ... , x n - 1 ) n - 1 ( M ) ) ) H 𝔞 n ( D ( H ( n - 1 M ) ) ) ... , where n : = cd ( 𝔞 , M ) is a non-negative integer, x 1 , ... , x n - 1 is a regular sequence in 𝔞 on M and, for an R -module L , H 𝔞 i ( L ) is the i th local cohomology module of L with respect...

Matlis reflexive and generalized local cohomology modules

Amir Mafi (2009)

Czechoslovak Mathematical Journal

Let ( R , 𝔪 ) be a complete local ring, 𝔞 an ideal of R and N and L two Matlis reflexive R -modules with Supp ( L ) V ( 𝔞 ) . We prove that if M is a finitely generated R -module, then Ext R i ( L , H 𝔞 j ( M , N ) ) is Matlis reflexive for all i and j in the following cases: (a) dim R / 𝔞 = 1 ; (b) cd ( 𝔞 ) = 1 ; where cd is the cohomological dimension of 𝔞 in R ; (c) dim R 2 . In these cases we also prove that the Bass numbers of H 𝔞 j ( M , N ) are finite.

Currently displaying 1 – 2 of 2

Page 1