The search session has expired. Please query the service again.
Let be a commutative Noetherian local ring, be an ideal of and a finitely generated -module such that and , where is the cohomological dimension of with respect to and is the -grade of . Let be the Matlis dual functor, where is the injective hull of the residue field . We show that there exists the following long exact sequence
where is a non-negative integer, is a regular sequence in on and, for an -module , is the th local cohomology module of with respect...
Let be a complete local ring, an ideal of and and two Matlis reflexive -modules with . We prove that if is a finitely generated -module, then is Matlis reflexive for all and in the following cases: (a) ; (b) ; where is the cohomological dimension of in ; (c) . In these cases we also prove that the Bass numbers of are finite.
Let R be a commutative noetherian ring, let be an ideal of R, and let be a subcategory of the category of R-modules. The condition , defined for R-modules, was introduced by Aghapournahr and Melkersson (2008) in order to study when the local cohomology modules relative to belong to . In this paper, we define and study the class consisting of all modules satisfying . If and are ideals of R, we get a necessary and sufficient condition for to satisfy and simultaneously. We also find some sufficient...
Currently displaying 1 –
5 of
5