Regularity of Ideals and their Radicals.
We study finitely generated bigraded Buchsbaum modules over a standard bigraded polynomial ring with respect to one of the irrelevant bigraded ideals. The regularity and the Hilbert function of graded components of local cohomology at the finiteness dimension level are considered.
Let be a commutative Noetherian ring and let be a semidualizing -module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every -injective module , the character module is -flat, then the class is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class is covering....
Let be a commutative Noetherian ring, and let be a semidualizing -module. The notion of -tilting -modules is introduced as the relative setting of the notion of tilting -modules with respect to . Some properties of tilting and -tilting modules and the relations between them are mentioned. It is shown that every finitely generated -tilting -module is -projective. Finally, we investigate some kernel subcategories related to -tilting modules.