The distributivity property of finite intersections of valuation rings
The paper examines the ring of arithmetical functions, identifying it to the domain of formal power series over in a countable set of indeterminates. It is proven that is a complete ultrametric space and all its continuous endomorphisms are described. It is also proven that is a quasi-noetherian ring.
On montre que tout anneau local régulier complet muni d’une valuation de rang peut être plongé, en tant qu’anneau valué, dans un anneau de séries de Puiseux généralisées.