Families of elliptic curves with genus 2 covers of degree 2.
We study genus 2 covers of relative elliptic curves over an arbitrary base in which 2 is invertible. Particular emphasis lies on the case that the covering degree is 2. We show that the data in the "basic construction" of genus 2 covers of relative elliptic curves determine the cover in a unique way (up to isomorphism).A classical theorem says that a genus 2 cover of an elliptic curve of degree 2 over a field of characteristic ≠ 2 is birational to a product of two elliptic curves over the projective...