Page 1

Displaying 1 – 4 of 4

Showing per page

Gonality for stable curves and their maps with a smooth curve as their target

Edoardo Ballico (2009)

Open Mathematics

Here we study the deformation theory of some maps f: X → ℙr , r = 1, 2, where X is a nodal curve and f|T is not constant for every irreducible component T of X. For r = 1 we show that the “stratification by gonality” for any subset of [...] with fixed topological type behaves like the stratification by gonality of M g.

Green's generic syzygy conjecture for curves of even genus lying on a K3 surface

Claire Voisin (2002)

Journal of the European Mathematical Society

We consider the generic Green conjecture on syzygies of a canonical curve, and particularly the following reformulation thereof: For a smooth projective curve C of genus g in characteristic 0, the condition Cliff C > l is equivalent to the fact that K g - l ' - 2 , 1 ( C , K C ) = 0 , l ' l . We propose a new approach, which allows up to prove this result for generic curves C of genus g ( C ) and gonality gon(C) in the range g ( C ) 3 + 1 gon(C) g ( C ) 2 + 1 .

Currently displaying 1 – 4 of 4

Page 1