Page 1

Displaying 1 – 7 of 7

Showing per page

On ramified covers of the projective plane II: Generalizing Segre’s theory

Michael Friedman, Rebecca Lehman, Maxim Leyenson, Mina Teicher (2012)

Journal of the European Mathematical Society

The classical Segre theory gives a necessary and sufficient condition for a plane curve to be a branch curve of a (generic) projection of a smooth surface in 3 . We generalize this result for smooth surfaces in a projective space of any dimension in the following way: given two plane curves, B and E , we give a necessary and sufficient condition for B to be the branch curve of a surface X in N and E to be the image of the double curve of a 3 -model of X . In the classical Segre theory, a plane curve...

On the Difference of 4-Gonal Linear Systems on some Curves

Ohbuchi, Akira (1997)

Serdica Mathematical Journal

Let C = (C, g^1/4 ) be a tetragonal curve. We consider the scrollar invariants e1 , e2 , e3 of g^1/4 . We prove that if W^1/4 (C) is a non-singular variety, then every g^1/4 ∈ W^1/4 (C) has the same scrollar invariants.

On the variety of linear series on a singular curve

E. Ballico, C. Fontanari (2002)

Bollettino dell'Unione Matematica Italiana

Let Y be an integral projective curve with g := p a Y 2 . For all positive integers d , r let W d r Y * A * be the set of all L Pic d Y with h 0 Y , L r + 1 and L spanned. Here we prove that if d g - 2 , then dim W d r Y * A * d - 3 r except in a few cases (essentially if Y is a double covering).

On the variety of quadrics of rank four containing a projective curve

Alexis G. Zamora (1999)

Bollettino dell'Unione Matematica Italiana

Sia X P H 0 X , L * una curva proeittiva e lissa, generali nel senso di Brill-Noether, indichiamo con R 4 X l'insieme algebrico di quadrici di rango 4 contenendo a X . In questo lavoro noi descriviamo birazionalmente i componenti irriducibile di R 4 X .

Currently displaying 1 – 7 of 7

Page 1