The cohomology of period domains for reductive groups over finite fields
The ring of projective invariants of ordered points on the projective line is one of the most basic and earliest studied examples in Geometric Invariant Theory. It is a remarkable fact and the point of this paper that, unlike its close relative the ring of invariants of unordered points, this ring can be completely and simply described. In 1894 Kempe found generators for this ring, thereby proving the First Main Theorem for it (in the terminology introduced by Weyl). In this paper we compute...
A rational map ϕ: ℙ¹ → ℙ¹ along with an ordered list of fixed and critical points is called a totally marked rational map. The space of totally marked degree two rational maps can be parametrized by an affine open subset of (ℙ¹)⁵. We consider the natural action of SL₂ on induced from the action of SL₂ on (ℙ¹)⁵ and prove that the quotient space exists as a scheme. The quotient is isomorphic to a Del Pezzo surface with the isomorphism being defined over ℤ[1/2].
We develop a new approach of extension calculus in the category of strict polynomial functors, based on Troesch complexes. We obtain new short elementary proofs of numerous classical -computations as well as new results. In particular, we get a cohomological version of the “fundamental theorems” from classical invariant theory for for big enough (and we give a conjecture for smaller values of ). We also study the “twisting spectral sequence” converging to the extension groups between the...