The Gaussian measure on algebraic varieties
We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety is dense in the Hilbert space , where dμ denotes the volume form of M and the Gaussian measure on M.
We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety is dense in the Hilbert space , where dμ denotes the volume form of M and the Gaussian measure on M.
On introduit, dans ce travail, une hypothèse sur le spiralement d’une feuille d’un feuilletage analytique réel de codimension un (hypersurface pfaffienne). On en tire des résultats très généraux de finitude du type de Khovanskii. Des exemples précis montrent la généralité de ces hypersurfaces pfaffiennes. Une description complété des bouts de telles variétés en dimension trois est donnée.