The Cauchy problem for linear hyperbolic systems in
We take as given a real symmetric matrix A, whose graph is a tree T, and the eigenvalues of A, with their multiplicities. Each edge of T may then be classified in one of four categories, based upon the change in multiplicity of a particular eigenvalue, when the edge is removed (i.e. the corresponding entry of A is replaced by 0).We show a necessary and suficient condition for each possible classification of an edge. A special relationship is observed among 2-Parter edges, Parter edges and singly...
In this paper we consider two versions of the Collatz-Wielandt quotient for a pair of nonnegative operators that map a given pointed generating cone in the first space into a given pointed generating cone in the second space. If the two spaces and two cones are identical, and is the identity operator, then one version of this quotient is the spectral radius of . In some applications, as commodity pricing, power control in wireless networks and quantum information theory, one needs to deal with...
We give detailed discussion of a procedure for determining the robust -stability of a real matrix. The procedure begins from the Hurwitz stability criterion. The procedure is applied to two numerical examples.
2000 Mathematics Subject Classification: 15A29.In this paper we introduced a notion of the generalized spectral function for a matrix J = (gk,l)k,l = 0 Ґ, gk,l О C, such that gk,l = 0, if |k-l | > N; gk,k+N = 1, and gk,k-N № 0. Here N is a fixed positive integer. The direct and inverse spectral problems for such matrices are stated and solved. An integral representation for the generalized spectral function is obtained.