Non-trivial solutions to certain matrix equations.
We give a sufficient condition on a C*-algebra to ensure that every weakly compact operator into an arbitrary Banach space can be approximated by norm attaining operators and that every continuous bilinear form can be approximated by norm attaining bilinear forms. Moreover we prove that the class of C*-algebras satisfying this condition includes the group C*-algebras of compact groups.
Let A, B and C be matrices. We consider the matrix equations Y-AYB=C and AX-XB=C. Sharp norm estimates for solutions of these equations are derived. By these estimates a bound for the distance between invariant subspaces of matrices is obtained.
For a simple graph on vertices and an integer with , denote by the sum of largest signless Laplacian eigenvalues of . It was conjectured that , where is the number of edges of . This conjecture has been proved to be true for all graphs when , and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all ). In this note, this conjecture is proved to be true for all graphs when , and for some new classes of graphs.