Previous Page 5

Displaying 81 – 93 of 93

Showing per page

Log-majorizations and norm inequalities for exponential operators

Fumio Hiai (1997)

Banach Center Publications

Concise but self-contained reviews are given on theories of majorization and symmetrically normed ideals, including the proofs of the Lidskii-Wielandt and the Gelfand-Naimark theorems. Based on these reviews, we discuss logarithmic majorizations and norm inequalities of Golden-Thompson type and its complementary type for exponential operators on a Hilbert space. Furthermore, we obtain norm convergences for the exponential product formula as well as for that involving operator means.

Low rank Tucker-type tensor approximation to classical potentials

B. Khoromskij, V. Khoromskaia (2007)

Open Mathematics

This paper investigates best rank-(r 1,..., r d) Tucker tensor approximation of higher-order tensors arising from the discretization of linear operators and functions in ℝd. Super-convergence of the best rank-(r 1,..., r d) Tucker-type decomposition with respect to the relative Frobenius norm is proven. Dimensionality reduction by the two-level Tucker-to-canonical approximation is discussed. Tensor-product representation of basic multi-linear algebra operations is considered, including inner, outer...

Lower bounds for the largest eigenvalue of the gcd matrix on { 1 , 2 , , n }

Jorma K. Merikoski (2016)

Czechoslovak Mathematical Journal

Consider the n × n matrix with ( i , j ) ’th entry gcd ( i , j ) . Its largest eigenvalue λ n and sum of entries s n satisfy λ n > s n / n . Because s n cannot be expressed algebraically as a function of n , we underestimate it in several ways. In examples, we compare the bounds so obtained with one another and with a bound from S. Hong, R. Loewy (2004). We also conjecture that λ n > 6 π - 2 n log n for all n . If n is large enough, this follows from F. Balatoni (1969).

Low-rank tensor representation of Slater-type and Hydrogen-like orbitals

Martin Mrovec (2017)

Applications of Mathematics

The paper focuses on a low-rank tensor structured representation of Slater-type and Hydrogen-like orbital basis functions that can be used in electronic structure calculations. Standard packages use the Gaussian-type basis functions which allow us to analytically evaluate the necessary integrals. Slater-type and Hydrogen-like orbital functions are physically more appropriate, but they are not analytically integrable. A numerical integration is too expensive when using the standard discretization...

Currently displaying 81 – 93 of 93

Previous Page 5