Some theoretical results derived from polynomial numerical hulls of Jordan blocks.
For an m × N underdetermined system of linear equations with independent pre-Gaussian random coefficients satisfying simple moment conditions, it is proved that the s-sparse solutions of the system can be found by ℓ₁-minimization under the optimal condition m ≥ csln(eN/s). The main ingredient of the proof is a variation of a classical Restricted Isometry Property, where the inner norm becomes the ℓ₁-norm and the outer norm depends on probability distributions.
Let A stand for a Toeplitz operator with a continuous symbol on the Bergman space of the polydisk or on the Segal-Bargmann space over . Even in the case N = 1, the spectrum Λ(A) of A is available only in a few very special situations. One approach to gaining information about this spectrum is based on replacing A by a large “finite section”, that is, by the compression of A to the linear span of the monomials . Unfortunately, in general the spectrum of does not mimic the spectrum of A as...
In this paper, we determine all trees with the property that adding a particular edge will result in exactly two Laplacian eigenvalues increasing respectively by 1 and the other Laplacian eigenvalues remaining fixed. We also investigate a situation in which the algebraic connectivity is one of the changed eigenvalues.
The object of the present work is to construct all the generalized spectral functions of a certain class of Carleman operators in the Hilbert space and establish the corresponding expansion theorems, when the deficiency indices are (1,1). This is done by constructing the generalized resolvents of and then using the Stieltjes inversion formula.