A note on symetric matrices
This paper investigates the continuity of projection matrices and illustrates an important application of this property to the derivation of the asymptotic distribution of quadratic forms. We give a new proof and an extension of a result of Stewart (1977).
The nth-order determinant of a Toeplitz-Hessenberg matrix is expressed as a sum over the integer partitions of n. Many combinatorial identities involving integer partitions and multinomial coefficients can be generated using this formula.
This note contains a transparent presentation of the matrix Haffian. A basic theorem links this matrix and the differential ofthe matrix function under investigation, viz ∇F(X) and dF(X).Frequent use is being made of matrix derivatives as developed by Magnus and Neudecker.
It is well-known that any graph has all real eigenvalues and a graph is bipartite if and only if its spectrum is symmetric with respect to the origin. We are interested in finding whether the permanental roots of a bipartite graph G have symmetric property as the spectrum of G. In this note, we show that the permanental roots of bipartite graphs are symmetric with respect to the real and imaginary axes. Furthermore, we prove that any graph has no negative real permanental root, and any graph containing...
In this note a uniform transparent presentation of the scalar Haffian will be given. Some well-known results will be generalized. A link will be established between the scalar Haffian and the derivative matrix as developed by Magnus and Neudecker.