Displaying 61 – 80 of 126

Showing per page

Linear operators preserving maximal column ranks of nonbinary boolean matrices

Seok-Zun Song, Sung-Dae Yang, Sung-Min Hong, Young-Bae Jun, Seon-Jeong Kim (2000)

Discussiones Mathematicae - General Algebra and Applications

The maximal column rank of an m by n matrix is the maximal number of the columns of A which are linearly independent. We compare the maximal column rank with rank of matrices over a nonbinary Boolean algebra. We also characterize the linear operators which preserve the maximal column ranks of matrices over nonbinary Boolean algebra.

Maximal column rank preservers of fuzzy matrices

Seok-Zun Song, Soo-Roh Park (2001)

Discussiones Mathematicae - General Algebra and Applications

This paper concerns two notions of rank of fuzzy matrices: maximal column rank and column rank. We investigate the difference of them. We also characterize the linear operators which preserve the maximal column rank of fuzzy matrices. That is, a linear operator T preserves maximal column rank if and only if it has the form T(X) = UXV with some invertible fuzzy matrices U and V.

Note on strongly nil clean elements in rings

Aleksandra Kostić, Zoran Z. Petrović, Zoran S. Pucanović, Maja Roslavcev (2019)

Czechoslovak Mathematical Journal

Let R be an associative unital ring and let a R be a strongly nil clean element. We introduce a new idea for examining the properties of these elements. This approach allows us to generalize some results on nil clean and strongly nil clean rings. Also, using this technique many previous proofs can be significantly shortened. Some shorter proofs concerning nil clean elements in rings in general, and in matrix rings in particular, are presented, together with some generalizations of these results.

On feebly nil-clean rings

Marjan Sheibani Abdolyousefi, Neda Pouyan (2024)

Czechoslovak Mathematical Journal

A ring R is feebly nil-clean if for any a R there exist two orthogonal idempotents e , f R and a nilpotent w R such that a = e - f + w . Let R be a 2-primal feebly nil-clean ring. We prove that every matrix ring over R is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices.

Currently displaying 61 – 80 of 126