On linear operators strongly preserving invariants of Boolean matrices
Let be the general Boolean algebra and a linear operator on . If for any in (, respectively), is regular (invertible, respectively) if and only if is regular (invertible, respectively), then is said to strongly preserve regular (invertible, respectively) matrices. In this paper, we will give complete characterizations of the linear operators that strongly preserve regular (invertible, respectively) matrices over . Meanwhile, noting that a general Boolean algebra is isomorphic...