Newton iteration for the closest normal matrix of order two.
Let , and be fixed complex numbers. Let be the Toeplitz matrix all of whose entries above the diagonal are , all of whose entries below the diagonal are , and all of whose entries on the diagonal are . For , each principal minor of has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of . We also show that all complex polynomials in are Toeplitz matrices. In particular, the inverse of is a Toeplitz matrix when...
A nonnegative definite hermitian m × m matrix A≠0 has increasing principal minors if det A[I] ≤ det A[J] for I⊂J, where det A[I] is the principal minor of A based on rows and columns in the set I ⊆ {1,...,m}. For m > 1 we show A has increasing principal minors if and only if A−1 exists and its diagonal entries are less or equal to 1.
New proofs of two previously published theorems relating nonsingularity of interval matrices to -matrices are given.