-pure submodules.
In this note we obtain a necessary and sufficient condition for a ring to be -weakly regular (i) When is a ring with identity and without divisors of zero (ii) When is a ring without divisors of zero. Further it is proved in a -weakly regular ring with identity and without units every element is a zero divisor.
A ring is said to be strongly right bounded if every nonzero right ideal contains a nonzero ideal. In this paper strongly right bounded rings are characterized, conditions are determined which ensure that the split-null (or trivial) extension of a ring is strongly right bounded, and we characterize strongly right bounded right quasi-continuous split-null extensions of a left faithful ideal over a semiprime ring. This last result partially generalizes a result of C. Faith concerning split-null extensions...