A Characterization Of Primal Noetherian Rings.
In this paper, a new kind of graph on a commutative ring is introduced and investigated. Small intersection graph of a ring , denoted by , is a graph with all non-small proper ideals of as vertices and two distinct vertices and are adjacent if and only if is not small in . In this article, some interrelation between the graph theoretic properties of this graph and some algebraic properties of rings are studied. We investigated the basic properties of the small intersection graph as diameter,...
Many infinite finitely generated ideal-simple commutative semirings are additively idempotent. It is not clear whether this is true in general. However, to solve the problem, one can restrict oneself only to parasemifields.
In this paper, specifically, we look at the preservation of the diameter and girth of the zero-divisor graph with respect to an ideal of a commutative ring when extending to a finite direct product of commutative rings.
Let be the two-parameter quantized enveloping algebra and the locally finite subalgebra of under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of in the case when is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of by generators.