Eine axiomatische Kennzeichnung der Determinante auf endlich-erzeugten, projektiven Moduln.
In this paper we study a condition right FGTF on a ring R, namely when all finitely generated torsionless right R-modules embed in a free module. We show that for a von Neuman regular (VNR) ring R the condition is equivalent to every matrix ring Rn is a Baer ring; and this is right-left symmetric. Furthermore, for any Utumi VNR, this can be strengthened: R is FGTF iff R is self-injective.