-flat and -FP-injective modules
In this paper, we study the existence of the -flat preenvelope and the -FP-injective cover. We also characterize -coherent rings in terms of the -FP-injective and -flat modules.
In this paper, we study the existence of the -flat preenvelope and the -FP-injective cover. We also characterize -coherent rings in terms of the -FP-injective and -flat modules.
Let be a graded ring and be an integer. We introduce and study the notions of Gorenstein -FP-gr-injective and Gorenstein -gr-flat modules by using the notion of special finitely presented graded modules. On -gr-coherent rings, we investigate the relationships between Gorenstein -FP-gr-injective and Gorenstein -gr-flat modules. Among other results, we prove that any graded module in -gr (or gr-) admits a Gorenstein -FP-gr-injective (or Gorenstein -gr-flat) cover and preenvelope, respectively....
We prove a stronger form, , of a consistency result, , due to Eklof and Shelah. concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that does not hold for left perfect rings.