Page 1

Displaying 1 – 1 of 1

Showing per page

Ding projective and Ding injective modules over trivial ring extensions

Lixin Mao (2023)

Czechoslovak Mathematical Journal

Let R M be a trivial extension of a ring R by an R - R -bimodule M such that M R , R M , ( R , 0 ) R M and R M ( R , 0 ) have finite flat dimensions. We prove that ( X , α ) is a Ding projective left R M -module if and only if the sequence M R M R X M α M R X α X is exact and coker ( α ) is a Ding projective left R -module. Analogously, we explicitly describe Ding injective R M -modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.

Currently displaying 1 – 1 of 1

Page 1