Loading [MathJax]/extensions/MathZoom.js
Let A be a noetherian local commutative ring and let M be a suitable complex of A-modules. It is proved that M is a dualizing complex for A if and only if the trivial extension A ⋉ M is a Gorenstein differential graded algebra. As a corollary, A has a dualizing complex if and only if it is a quotient of a Gorenstein local differential graded algebra.
Let be a dg--module, the endomorphism dg-algebra of . We know that if is a good silting object, then there exist a dg-algebra and a recollement among the derived categories of , of and of . We investigate the condition under which the induced dg-algebra is weak nonpositive. In order to deal with both silting and cosilting dg-modules consistently, the notion of weak silting dg-modules is introduced. Thus, similar results for good cosilting dg-modules are obtained. Finally, some...
Currently displaying 1 –
2 of
2