Displaying 21 – 40 of 72

Showing per page

Full matrix algebras with structure systems

Hisaaki Fujita (2003)

Colloquium Mathematicae

We study associative, basic n × n𝔸-full matrix algebras over a field, whose multiplications are determined by structure systems 𝔸, that is, n-tuples of n × n matrices with certain properties.

Induced modules of strongly group-graded algebras

Th. Theohari-Apostolidi, H. Vavatsoulas (2007)

Colloquium Mathematicae

Various results on the induced representations of group rings are extended to modules over strongly group-graded rings. In particular, a proof of the graded version of Mackey's theorem is given.

Isomorphisms between representations of algebras.

Manuel Saorín (1992)

Publicacions Matemàtiques

In this paper we study the precise relation between two representations of a given split finite basic dimensional algebra A as a factor of the free path algebra over its quiver (A). After defining the notion of strongly acyclic quiver, we apply the results obtained to develop a method of calculating the group Aut(A)/Inn(A) in the case when (A) is strongly acyclic.

Limits of tilting modules

Clezio A. Braga, Flávio U. Coelho (2009)

Colloquium Mathematicae

We study the problem of when a direct limit of tilting modules is still a tilting module.

Locally adequate semigroup algebras

Yingdan Ji, Yanfeng Luo (2016)

Open Mathematics

We build up a multiplicative basis for a locally adequate concordant semigroup algebra by constructing Rukolaĭne idempotents. This allows us to decompose the locally adequate concordant semigroup algebra into a direct product of primitive abundant [...] 0-J* 0 - 𝒥 * -simple semigroup algebras. We also deduce a direct sum decomposition of this semigroup algebra in terms of the [...] ℛ* * -classes of the semigroup obtained from the above multiplicative basis. Finally, for some special cases, we provide a description...

On Auslander–Reiten components for quasitilted algebras

Flávio Coelho, Andrzej Skowroński (1996)

Fundamenta Mathematicae

An artin algebra A over a commutative artin ring R is called quasitilted if gl.dim A ≤ 2 and for each indecomposable finitely generated A-module M we have pd M ≤ 1 or id M ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander-Reiten quiver Γ A of a quasitilted algebra A.

Currently displaying 21 – 40 of 72