On modules with Le-decomposition.
We investigate the categorical behaviour of morphisms between indecomposable projective modules over a special biserial algebra A over an algebraically closed field, which are associated to arrows of the Gabriel quiver of A.
We investigate degenerations and derived equivalences of tame selfinjective algebras having no simply connected Galois coverings but the stable Auslander-Reiten quiver consisting only of tubes, discovered recently in [4].
The notion of the path coalgebra of a quiver with relations introduced in [11] and [12] is studied. In particular, developing this topic in the context of the weak* topology, we give a criterion that allows us to verify whether or not a relation subcoalgebra of a path coalgebra is the path coalgebra of a quiver with relations.
Quasitilted algebras have been introduced as a proper generalization of tilted algebras. In an earlier article we determined necessary conditions for one-point extensions of decomposable finite-dimensional hereditary algebras to be quasitilted and not tilted. In this article we study algebras satisfying these necessary conditions in order to investigate to what extent the conditions are sufficient.
Given a convex algebra ∧0 in the tame finite-dimensional basic algebra ∧, over an algebraically closed field, we describe a special type of restriction of the generic ∧-modules.
We continue the study of ditalgebras, an acronym for "differential tensor algebras", and of their categories of modules. We examine extension/restriction interactions between module categories over a ditalgebra and a proper subditalgebra. As an application, we prove a result on representations of finite-dimensional tame algebras Λ over an algebraically closed field, which gives information on the extension/restriction interaction between module categories of some special algebras Λ₀, called convex...
We describe the structure of finite-dimensional self-injective algebras of finite representation type over a field whose stable Auslander-Reiten quiver has a sectional module not lying on a short chain.
We provide a characterization of all finite-dimensional selfinjective algebras over a field K which are socle equivalent to a prominent class of selfinjective algebras of tilted type.
We give a complete description of all finite-dimensional selfinjective algebras over an algebraically closed field whose component quiver has no short cycles.
We describe the structure of all selfinjective artin algebras having at least three nonperiodic generalized standard Auslander-Reiten components. In particular, all selfinjective artin algebras having a generalized standard Auslander-Reiten component of Euclidean type are described.
We prove that for algebras obtained by tilts from the path algebras of equioriented Dynkin diagrams of type Aₙ, the rings of semi-invariants are polynomial.