Domestic iterated one-point extensions of algebras by two-ray modules
In the paper, we introduce a wide class of domestic finite dimensional algebras over an algebraically closed field which are obtained from the hereditary algebras of Euclidean type , n≥1, by iterated one-point extensions by two-ray modules. We prove that these algebras are domestic and their Auslander-Reiten quivers admit infinitely many nonperiodic connected components with infinitely many orbits with respect to the action of the Auslander-Reiten translation. Moreover, we exhibit a wide class of...