An approach to Hopf algebras via Frobenius coordinates.
Kadison, Lars, Stolin, A.A. (2001)
Beiträge zur Algebra und Geometrie
A.V. Kelarev (1995)
Semigroup forum
Ottmar Loos (1972)
Manuscripta mathematica
Chelliah Selvaraj, Sudalaimuthu Santhakumar (2018)
Commentationes Mathematicae Universitatis Carolinae
We introduce the notion of an automorphism liftable module and give a characterization to it. We prove that category equivalence preserves automorphism liftable. Furthermore, we characterize semisimple rings, perfect rings, hereditary rings and quasi-Frobenius rings by properties of automorphism liftable modules. Also, we study automorphism liftable modules with summand sum property (SSP) and summand intersection property (SIP).
Kiiti Morita, Hiroyuki Tachikawa (1956)
Mathematische Zeitschrift
Weimin Xue (1996)
Publicacions Matemàtiques
We characterize semiperfect modules, semiperfect rings, and perfect rings using locally projective covers and generalized locally projective covers, where locally projective modules were introduced by Zimmermann-Huisgen and generalized locally projective covers are adapted from Azumaya’s generalized projective covers.
Sumiyama, Takao (1995)
International Journal of Mathematics and Mathematical Sciences
Çalışıcı, Hamza, Pancar, Ali (2005)
Sibirskij Matematicheskij Zhurnal
Vlastimil Dlab, Claus Michael Ringel (1972)
Mathematische Zeitschrift
Rainer Schulz (1983)
Manuscripta mathematica
U. Oberst, H.-J. Schneider (1971)
Inventiones mathematicae
Artemovych, O.D. (2002)
Mathematica Pannonica
Hiroyuki Tachikawa (1957/1958)
Mathematische Zeitschrift
A. Hudry (1975)
Publications du Département de mathématiques (Lyon)
O. A. S. Karamzadeh, M. Motamedi, S. M. Shahrtash (2009)
Fundamenta Mathematicae
R. Kiełpiński, G. Simson, A. Tyc (1978)
Fundamenta Mathematicae
R.B. jr. Warfield (1972)
Mathematische Annalen
František Machala (1981)
Časopis pro pěstování matematiky
Garkusha, G.A. (2002)
Zapiski Nauchnykh Seminarov POMI
Biljana Zeković (2002)
Discussiones Mathematicae - General Algebra and Applications
Frobenius algebras play an important role in the representation theory of finite groups. In the present work, we investigate the (quasi) Frobenius property of n-group algebras. Using the (quasi-) Frobenius property of ring, we can obtain some information about constructions of module category over this ring ([2], p. 66-67).