Page 1

Displaying 1 – 17 of 17

Showing per page

On certain classes of modules.

Kalathoor Varadarajan (1992)

Publicacions Matemàtiques

Let X be a class or R-modules containing 0 and closed under isomorphic images. With any such X we associate three classes ΓX, FX and ΔX. The study of some of the closure properties of these classes allows us to obtain characterization of Artinian modules dualizing results of Chatters. The theory of Dual Glodie dimension as developed by the author in some of his earlier work plays a crucial role in the present paper.

On generalization of injectivity

Roger Yue Chi Ming (1992)

Archivum Mathematicum

Characterizations of quasi-continuous modules and continuous modules are given. A non-trivial generalization of injectivity (distinct from p -injectivity) is considered.

On p -injectivity, YJ-injectivity and quasi-Frobeniusean rings

Roger Yue Chi Ming (2002)

Commentationes Mathematicae Universitatis Carolinae

A new characteristic property of von Neumann regular rings is proposed in terms of annihilators of elements. An ELT fully idempotent ring is a regular ring whose simple left (or right) modules are either injective or projective. Artinian rings are characterized in terms of Noetherian rings. Strongly regular rings and rings whose two-sided ideals are generated by central idempotents are characterized in terms of special annihilators. Quasi-Frobeniusean rings are characterized in terms of p -injectivity....

On rings with a unique proper essential right ideal

O. A. S. Karamzadeh, M. Motamedi, S. M. Shahrtash (2004)

Fundamenta Mathematicae

Right ue-rings (rings with the property of the title, i.e., with the maximality of the right socle) are investigated. It is shown that a semiprime ring R is a right ue-ring if and only if R is a regular V-ring with the socle being a maximal right ideal, and if and only if the intrinsic topology of R is non-discrete Hausdorff and dense proper right ideals are semisimple. It is proved that if R is a right self-injective right ue-ring (local right ue-ring), then R is never semiprime and is Artin semisimple...

Currently displaying 1 – 17 of 17

Page 1