Displaying 61 – 80 of 129

Showing per page

On rings with a unique proper essential right ideal

O. A. S. Karamzadeh, M. Motamedi, S. M. Shahrtash (2004)

Fundamenta Mathematicae

Right ue-rings (rings with the property of the title, i.e., with the maximality of the right socle) are investigated. It is shown that a semiprime ring R is a right ue-ring if and only if R is a regular V-ring with the socle being a maximal right ideal, and if and only if the intrinsic topology of R is non-discrete Hausdorff and dense proper right ideals are semisimple. It is proved that if R is a right self-injective right ue-ring (local right ue-ring), then R is never semiprime and is Artin semisimple...

Perfect rings for which the converse of Schur's lemma holds.

Abdelfattah Haily, Mostafa Alaoui (2001)

Publicacions Matemàtiques

If M is a simple module over a ring R then, by the Schur's lemma, the endomorphism ring of M is a division ring. However, the converse of this result does not hold in general, even when R is artinian. In this short note, we consider perfect rings for which the converse assertion is true, and we show that these rings are exactly the primary decomposable ones.

QF-3 rings.

Claus Michael Ringel, H. Tachikawa (1975)

Journal für die reine und angewandte Mathematik

Currently displaying 61 – 80 of 129