Displaying 81 – 100 of 129

Showing per page

Rad-supplemented modules

Engin Büyükaşik, Engin Mermut, Salahattin Özdemir (2010)

Rendiconti del Seminario Matematico della Università di Padova

Regularly weakly based modules over right perfect rings and Dedekind domains

Michal Hrbek, Pavel Růžička (2017)

Czechoslovak Mathematical Journal

A weak basis of a module is a generating set of the module minimal with respect to inclusion. A module is said to be regularly weakly based provided that each of its generating sets contains a weak basis. We study (1) rings over which all modules are regularly weakly based, refining results of Nashier and Nichols, and (2) regularly weakly based modules over Dedekind domains.

Rings whose proper factors are right perfect

Alberto Facchini, Catia Parolin (2011)

Colloquium Mathematicae

We show that practically all the properties of almost perfect rings, proved by Bazzoni and Salce [Colloq. Math. 95 (2003)] for commutative rings, also hold in the non-commutative setting.

Rings with zero intersection property on annihilators: Zip rings.

Carl Faith (1989)

Publicacions Matemàtiques

Zelmanowitz [12] introduced the concept of ring, which we call right zip rings, with the defining properties below, which are equivalent:(ZIP 1) If the right anihilator X⊥ of a subset X of R is zero, then X1⊥ = 0 for a finite subset X1 ⊆ X.(ZIP 2) If L is a left ideal and if L⊥ = 0, then L1⊥ = 0 for a finitely generated left ideal L1 ⊆ L.In [12], Zelmanowitz noted that any ring R satisfying the d.c.c. on anihilator right ideals (= dcc ⊥) is a right zip ring, and hence, so is any subring of R. He...

Some results on quasi-Frobenius rings

Zhanmin Zhu (2017)

Commentationes Mathematicae Universitatis Carolinae

We give some new characterizations of quasi-Frobenius rings by the generalized injectivity of rings. Some characterizations give affirmative answers to some open questions about quasi-Frobenius rings; and some characterizations improve some results on quasi-Frobenius rings.

Split-null extensions of strongly right bounded rings.

Gary F. Birkenmeier (1990)

Publicacions Matemàtiques

A ring is said to be strongly right bounded if every nonzero right ideal contains a nonzero ideal. In this paper strongly right bounded rings are characterized, conditions are determined which ensure that the split-null (or trivial) extension of a ring is strongly right bounded, and we characterize strongly right bounded right quasi-continuous split-null extensions of a left faithful ideal over a semiprime ring. This last result partially generalizes a result of C. Faith concerning split-null extensions...

Strongly graded left FTF rings.

José Gómez, Blas Torrecillas (1992)

Publicacions Matemàtiques

An associated ring R with identity is said to be a left FTF ring when the class of the submodules of flat left R-modules is closed under injective hulls and direct products. We prove (Theorem 3.5) that a strongly graded ring R by a locally finite group G is FTF if and only if Re is left FTF, where e is a neutral element of G. This provides new examples of left FTF rings. Some consequences of this Theorem are given.

Currently displaying 81 – 100 of 129