Semigroups and rings whose proper one-sided ideals are power joined
We examine when the nil and prime radicals of an algebra are stable under q-skew σ-derivations. We provide an example which shows that even if q is not a root of 1 or if δ and σ commute in characteristic 0, then the nil and prime radicals need not be δ-stable. However, when certain finiteness conditions are placed on δ or σ, then the nil and prime radicals are δ-stable.
Generalizing Petrogradsky’s construction, we give examples of infinite-dimensional nil Lie algebras of finite Gelfand–Kirillov dimension over any field of positive characteristic.
Let and be two ring homomorphisms and let and be two ideals of and , respectively, such that . We investigate unipotent, symmetric and reversible properties of the bi-amalgamation ring of with along with respect to .