On a simplicial complex associated with tilting modules.
A well-known theorem due to Kolchin states that a semi-group G of unipotent matrices over a field F can be brought to a triangular form over the field F [4, Theorem H]. Recall that a matrix A is called unipotent if its only eigenvalue is 1, or, equivalently, if the matrix I - A is nilpotent.Many years ago I noticed that this result of Kolchin is an immediate consequence of a too-little known result due to Wedderburn [6]. This result of Wedderburn asserts that if B is a finite dimensional algebra...
In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.