Idéal complètement premier d'un anneau noethérien à gauche intègre
I. S. Cohen proved that any commutative local noetherian ring R that is J(R)-adic complete admits a coefficient subring. Analogous to the concept of a coefficient subring is the concept of an inertial subring of an algebra A over a commutative ring K. In case K is a Hensel ring and the module is finitely generated, under some additional conditions, as proved by Azumaya, A admits an inertial subring. In this paper the question of existence of an inertial subring in a locally finite algebra is discussed....
2000 Mathematics Subject Classification: 16R50, 16R10.The paper is a survey on involutions (anti-automorphisms of order two) of different kinds. Starting with the first systematic investigations on involutions of central simple algebras due to Albert the author emphasizes on their basic properties, the conditions on their existence and their correspondence with structural characteristics of the algebras. Focusing on matrix algebras a complete description of involutions of the first kind on Mn(F)...