Page 1

Displaying 1 – 8 of 8

Showing per page

On a theorem of McCoy

Rajendra K. Sharma, Amit B. Singh (2024)

Mathematica Bohemica

We study McCoy’s theorem to the skew Hurwitz series ring ( HR , ω ) for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring R satisfies McCoy’s theorem of skew Hurwitz series.

On presentations of semigroup rings

Mario Petrich, Pedro V. Silva (1999)

Bollettino dell'Unione Matematica Italiana

Siano I un ideale di un anello R e σ una congruenza su un semigruppo S . Consideriamo l'anello semigruppo R / I S / σ come un'immagine omomorfa dell'anello semigruppo R S . Questo è fatto in tre passi: prima studiando l'anello semigruppo R S / σ , poi R / I S e infine combinando i due casi speciali. In ciascun caso, determiniamo l'ideale che è il nucleo dell'omomorfismo in questione. I risultati corrispondenti per le C -algebre, dove C è un anello commutativo, possono essere facilmente dedotti. Alcuni raffinamenti, casi speciali...

On semifir monoid rings.

Ferrán Cedó Gine (1989)

Publicacions Matemàtiques

We give a new condition on a monoid M for the monoid ring F[M] to be a 2-fir. Furthermore, we construct a monoid M that satisfies all the currently known necessary conditions for F[M] to be a semifir and that the group of units of M is trivial, but M is not a directed union of free monoids.

On subrings of amalgamated free products of rings

James Renshaw (1999)

Colloquium Mathematicae

The aim of this paper is to develop the homological machinery needed to study amalgams of subrings. We follow Cohn [1] and describe an amalgam of subrings in terms of reduced iterated tensor products of the rings forming the amalgam and prove a result on embeddability of amalgamated free products. Finally we characterise the commutative perfect amalgamation bases.

Currently displaying 1 – 8 of 8

Page 1