Sur le centre de l'algèbre enveloppante d'une algèbre de Takiff
In this paper we study the Hopf adjoint action of group algebras and enveloping algebras. We are particularly concerned with determining when these representations are faithful. Delta methods allow us to reduce the problem to certain better behaved subalgebras. Nevertheless, the problem remains open in the finite group and finite-dimensional Lie algebra cases.
Let X be a complex smooth projective variety, and G a locally free sheaf on X. We show that there is a one-to-one correspondence between pairs (Λ, Ξ), where Λ is a sheaf of almost polynomial filtered algebras over X satisfying Simpson’s axioms and is an isomorphism, and pairs (L, Σ), where L is a holomorphic Lie algebroid structure on and Σ is a class in F 1 H 2(L, ℂ), the first Hodge filtration piece of the second cohomology of L. As an application, we construct moduli spaces of semistable...