The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The category of group-graded modules over an abelian group is a monoidal category. For any bicharacter of this category becomes a braided monoidal category. We define the notion of a Lie algebra in this category generalizing the concepts of Lie super and Lie color algebras. Our Lie algebras have -ary multiplications between various graded components. They possess universal enveloping algebras that are Hopf algebras in the given category. Their biproducts with the group ring are noncommutative...
Let be a semisimple complex algebraic group and its flag variety. Let and let be its enveloping algebra. Let be a Cartan subalgebra of . For , let be the corresponding minimal primitive ideal, let , and let be the Hattori-Stallings trace. Results of Hodges suggest to study this map as a step towards a classification, up to isomorphism or Morita equivalence, of the -algebras . When is regular, Hodges has shown that . In this case is generated by the classes corresponding to...
Currently displaying 1 –
3 of
3