The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The category of group-graded modules over an abelian group is a monoidal category. For any bicharacter of this category becomes a braided monoidal category. We define the notion of a Lie algebra in this category generalizing the concepts of Lie super and Lie color algebras. Our Lie algebras have -ary multiplications between various graded components. They possess universal enveloping algebras that are Hopf algebras in the given category. Their biproducts with the group ring are noncommutative...
Let be a semisimple complex algebraic group and its flag variety. Let and let be its enveloping algebra. Let be a Cartan subalgebra of . For , let be the corresponding minimal primitive ideal, let , and let be the Hattori-Stallings trace. Results of Hodges suggest to study this map as a step towards a classification, up to isomorphism or Morita equivalence, of the -algebras . When is regular, Hodges has shown that . In this case is generated by the classes corresponding to...
Currently displaying 1 –
3 of
3