Invariant differential operators on the tangent space of some symmetric spaces
Let be a complex, semisimple Lie algebra, with an involutive automorphism and set , . We consider the differential operators, , on that are invariant under the action of the adjoint group of . Write for the differential of this action. Then we prove, for the class of symmetric pairs considered by Sekiguchi, that . An immediate consequence of this equality is the following result of Sekiguchi: Let be a real form of one of these symmetric pairs , and suppose that is a -invariant...