Loading [MathJax]/extensions/MathZoom.js
Let k be a field and G a finite group. By analogy with the theory of phantom maps in topology, a map f : M → ℕ between kG-modules is said to be phantom if its restriction to every finitely generated submodule of M factors through a projective module. We investigate the relationships between the theory of phantom maps, the algebraic theory of purity, and Rickard's idempotent modules. In general, adding one to the pure global dimension of kG gives an upper bound for the number of phantoms we need...
A ring is called right P-injective if every homomorphism from a principal right ideal of to can be extended to a homomorphism from to . Let be a ring and a group. Based on a result of Nicholson and Yousif, we prove that the group ring is right P-injective if and only if (a) is right P-injective; (b) is locally finite; and (c) for any finite subgroup of and any principal right ideal of , if , then there exists such that . Similarly, we also obtain equivalent characterizations...
Currently displaying 1 –
10 of
10