Radicals of semi-group rings
In this paper we study restricted Boolean rings and group rings. A ring is if every proper homomorphic image of is boolean. Our main aim is to characterize restricted Boolean group rings. A complete characterization of non-prime restricted Boolean group rings has been obtained. Also in case of prime group rings necessary conditions have been obtained for a group ring to be restricted Boolean. A counterexample is given to show that these conditions are not sufficient.
We completely determine when a ring consists entirely of weak idempotents, units and nilpotents. We prove that such ring is exactly isomorphic to one of the following: a Boolean ring; ; where is a Boolean ring; local ring with nil Jacobson radical; or ; or the ring of a Morita context with zero pairings where the underlying rings are or .