Displaying 201 – 220 of 382

Showing per page

On Jordan ideals and derivations in rings with involution

Lahcen Oukhtite (2010)

Commentationes Mathematicae Universitatis Carolinae

Let R be a 2 -torsion free * -prime ring, d a derivation which commutes with * and J a * -Jordan ideal and a subring of R . In this paper, it is shown that if either d acts as a homomorphism or as an anti-homomorphism on J , then d = 0 or J Z ( R ) . Furthermore, an example is given to demonstrate that the * -primeness hypothesis is not superfluous.

On McCoy condition and semicommutative rings

Mohamed Louzari (2013)

Commentationes Mathematicae Universitatis Carolinae

Let R be a ring and σ an endomorphism of R . We give a generalization of McCoy’s Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28–29] to the setting of skew polynomial rings of the form R [ x ; σ ] . As a consequence, we will show some results on semicommutative and σ -skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.

On near-ring ideals with ( σ , τ ) -derivation

Öznur Golbaşi, Neşet Aydin (2007)

Archivum Mathematicum

Let N be a 3 -prime left near-ring with multiplicative center Z , a ( σ , τ ) -derivation D on N is defined to be an additive endomorphism satisfying the product rule D ( x y ) = τ ( x ) D ( y ) + D ( x ) σ ( y ) for all x , y N , where σ and τ are automorphisms of N . A nonempty subset U of N will be called a semigroup right ideal (resp. semigroup left ideal) if U N U (resp. N U U ) and if U is both a semigroup right ideal and a semigroup left ideal, it be called a semigroup ideal. We prove the following results: Let D be a ( σ ,

On periodic rings.

Du, Xiankun, Yi, Qi (2001)

International Journal of Mathematics and Mathematical Sciences

Currently displaying 201 – 220 of 382