Page 1 Next

Displaying 1 – 20 of 29

Showing per page

Semicommutativity of the rings relative to prime radical

Handan Kose, Burcu Ungor (2015)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we introduce a new kind of rings that behave like semicommutative rings, but satisfy yet more known results. This kind of rings is called P -semicommutative. We prove that a ring R is P -semicommutative if and only if R [ x ] is P -semicommutative if and only if R [ x , x - 1 ] is P -semicommutative. Also, if R [ [ x ] ] is P -semicommutative, then R is P -semicommutative. The converse holds provided that P ( R ) is nilpotent and R is power serieswise Armendariz. For each positive integer n , R is P -semicommutative if and...

Single elements.

Gardner, B.J., Mason, Gordon (2006)

Beiträge zur Algebra und Geometrie

Square subgroups of rank two abelian groups

A. M. Aghdam, A. Najafizadeh (2009)

Colloquium Mathematicae

Let G be an abelian group and ◻ G its square subgroup as defined in the introduction. We show that the square subgroup of a non-homogeneous and indecomposable torsion-free group G of rank two is a pure subgroup of G and that G/◻ G is a nil group.

Strongly 2-nil-clean rings with involutions

Huanyin Chen, Marjan Sheibani Abdolyousefi (2019)

Czechoslovak Mathematical Journal

A * -ring R is strongly 2-nil- * -clean if every element in R is the sum of two projections and a nilpotent that commute. Fundamental properties of such * -rings are obtained. We prove that a * -ring R is strongly 2-nil- * -clean if and only if for all a R , a 2 R is strongly nil- * -clean, if and only if for any a R there exists a * -tripotent e R such that a - e R is nilpotent and e a = a e , if and only if R is a strongly * -clean SN ring, if and only if R is abelian, J ( R ) is nil and R / J ( R ) is * -tripotent. Furthermore, we explore the structure...

Structure of the Unit Group of FD10

Khan, Manju (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 16U60, 20C05.The structure of the unit group of the group algebra FD10 of the dihedral group D10 of order 10 over a finite field F has been obtained.Supported by National Board of Higher Mathematics, DAE, India.

Currently displaying 1 – 20 of 29

Page 1 Next