Previous Page 2

Displaying 21 – 21 of 21

Showing per page

Multiplicative Lie triple derivations on standard operator algebras

Bilal Ahmad Wani (2021)

Communications in Mathematics

Let 𝒳 be a Banach space of dimension n > 1 and 𝔄 ( 𝒳 ) be a standard operator algebra. In the present paper it is shown that if a mapping d : 𝔄 𝔄 (not necessarily linear) satisfies d ( [ [ U , V ] , W ] ) = [ [ d ( U ) , V ] , W ] + [ [ U , d ( V ) ] , W ] + [ [ U , V ] , d ( W ) ] for all U , V , W 𝔄 , then d = ψ + τ , where ψ is an additive derivation of 𝔄 and τ : 𝔄 𝔽 I vanishes at second commutator [ [ U , V ] , W ] for all U , V , W 𝔄 . Moreover, if d is linear and satisfies the above relation, then there exists an operator S 𝔄 and a linear mapping τ from 𝔄 into 𝔽 I satisfying τ ( [ [ U , V ] , W ] ) = 0 for all U , V , W 𝔄 , such that d ( U ) = S U - U S + τ ( U ) for all U 𝔄 .

Currently displaying 21 – 21 of 21

Previous Page 2