Page 1

Displaying 1 – 7 of 7

Showing per page

Weak Baer modules over graded rings

Mark Teply, Blas Torrecillas (1998)

Colloquium Mathematicae

In [2], Fuchs and Viljoen introduced and classified the B * -modules for a valuation ring R: an R-module M is a B * -module if E x t R 1 ( M , X ) = 0 for each divisible module X and each torsion module X with bounded order. The concept of a B * -module was extended to the setting of a torsion theory over an associative ring in [14]. In the present paper, we use categorical methods to investigate the B * -modules for a group graded ring. Our most complete result (Theorem 4.10) characterizes B * -modules for a strongly graded ring R...

Weak dimension of group-graded rings.

Angel del Río (1990)

Publicacions Matemàtiques

We study the weak dimension of a group-graded ring using methods developed in [B1], [Q] and [R]. We prove that if R is a G-graded ring with G locally finite and the order of every subgroup of G is invertible in R, then the graded weak dimension of R is equal to the ungraded one.

Weak Polynomial Identities for M1,1(E)

Di Vincenzo, Onofrio, La Scala, Roberto (2001)

Serdica Mathematical Journal

* Partially supported by Universita` di Bari: progetto “Strutture algebriche, geometriche e descrizione degli invarianti ad esse associate”.We compute the cocharacter sequence and generators of the ideal of the weak polynomial identities of the superalgebra M1,1 (E).

Weighted w -core inverses in rings

Liyun Wu, Huihui Zhu (2023)

Czechoslovak Mathematical Journal

Let R be a unital * -ring. For any a , s , t , v , w R we define the weighted w -core inverse and the weighted dual s -core inverse, extending the w -core inverse and the dual s -core inverse, respectively. An element a R has a weighted w -core inverse with the weight v if there exists some x R such that a w x v x = x , x v a w a = a and ( a w x ) * = a w x . Dually, an element a R has a weighted dual s -core inverse with the weight t if there exists some y R such that y t y s a = y , a s a t y = a and ( y s a ) * = y s a . Several characterizations of weighted w -core invertible and weighted dual s -core invertible...

Currently displaying 1 – 7 of 7

Page 1