On categories into which each concrete category can be embedded. II
A category is called -determined if every set of non-isomorphic -objects such that their endomorphism monoids are isomorphic has a cardinality less than . A quasivariety is called -universal if the lattice of all subquasivarieties of any quasivariety of finite type is a homomorphic image of a sublattice of the lattice of all subquasivarieties of . We say that a variety is var-relatively alg-universal if there exists a proper subvariety of such that homomorphisms of whose image does...